Mark scheme - Quantum Physics

Questio n		Answer/Indicative content	Mar ks	Guidance
1		A	1	
		Total	1	
2		B	1	
		Total	1	
3		D	1	
		Total	1	
4		B	1	
		Total	1	
5		C	1	
		Total	1	
6		D	1	
		Total	1	
7		B	1	
		Total	1	
8		A	1	
		Total	1	
9		D	1	
		Total	1	
0		D	1	Examiner's Comments All of the questions showed a positive discrimination, and the less able candidates could access the easier questions. The questions in Section A do require careful reading and scrutiny. Candidates are advised to reflect carefully before recording their response in the box. Candidates must endeavour to use a variety of quick techniques when answering multiple choice questions. The candidates to demonstrate their knowledge and understanding of physics.
		Total	1	
$\begin{array}{\|l\|} 1 \\ 1 \end{array}$		A	1	
		Total	1	

4.5 Quantum Physics

	Total	1	
2 0	A	1	
	Total	1	
$\begin{aligned} & 2 \\ & 1 \end{aligned}$	C	1	
	Total	1	
$\begin{aligned} & 2 \\ & 2 \end{aligned}$	D	1	Examiner's Comments Slightly more than half of the candidates got the correct answer D in this question on the photoelectric equation. No detailed calculations were necessary here. The maximum kinetic energy of a photoelectron had to be 2.0 eV (difference between photon energy of 5.0 eV and the work function of the metal 3.0 eV), which made the value of 3.0 eV impossible. The most popular distractor was A.
	Total	1	
$\begin{aligned} & 2 \\ & 3 \end{aligned}$	D	1	
	Total	1	
2	D	1	
	Total	1	
$\begin{aligned} & 2 \\ & 5 \end{aligned}$	C	1	
	Total	1	
2	B	1	
	Total	1	
2 7	A	1	
	Total	1	
2 8	The minimum energy needed to remove an electron (from the surface of a metal)	B1	Allow work done for energy Allow photoelectron for electron Examiner's Comments This is a standard definition which candidates should be able to state. Candidates should remember that the work function is a minimum energy. There is occasionally a misconception regarding ionisation, and also some careless use of language for the removal of the electron. Words such as escape and eject are

4.5 Quantum Physics

				acceptable, but terms such as dislocation are not clear enough. The definition does not require the statement that it is from the surface of the metal this time, but that does not mean that it will not be required in the future.
		Total	1	
2		A	1	
		Total	1	
3		B	1	
		Total	1	
3		D	1	
		Total	1	
3		$\begin{aligned} & \lambda\left(=\frac{h}{m v}\right)=\frac{6.63 \times 10^{-34}}{9.11 \times 10^{-31} \times 5.5 \times 10^{5}} \\ & =1.3(2) \times 10^{-9}(\mathrm{~m}) \end{aligned}$	C1 A1	Examiner's Comments The final question was either answered very well or candidates chose an incorrect equation, often $E=\frac{h c}{\lambda}$.
	b	Energy of a photon	B1	Ignore h is Planck constant and f is frequency Examiner's Comments Many candidates simply defined the symbols as opposed to the term. It was expected that candidates would state that $h f$ was the energy of a photon.
	ii	Minimum energy required to remove/emit (a single) electron from the metal surface	B1	Ignore 'it is work function' Ignore photoelectric effect Examiner's Comments Again, a common answer was to state that ϕ represented the work function rather than defining what is meant by work function. Good candidates stated that the work function was the minimum energy needed to remove an electron from a metal surface.
		Total	4	
$\begin{aligned} & 3 \\ & 3 \end{aligned}$		The rate of photons incident on \mathbf{M} is doubled. The rate of emission of photoelectrons / current is doubled.	B1 B1	
		Total	2	
3 4		$h \rightarrow \mathrm{~J} \mathrm{~s} / \underset{\mathrm{s}}{h} \xrightarrow{h} \mathrm{Nm} / \mathrm{J} \rightarrow \mathrm{kg} \mathrm{m}^{2} \mathrm{~s}^{-2}$	C1 A1	

\begin{tabular}{|c|c|c|c|c|}
\hline \& \& base unit $=\mathrm{kg} \mathrm{m}^{2} \mathrm{~s}^{-1}$ \& \&

\hline \& \& Total \& 2 \&

\hline 3
5 \& a \& $$
\begin{aligned}
& \text { (kinetic energy }=\text {) } 1.6 \times 10^{-19} \times 300 \\
& \mathrm{eV}=\frac{1}{2} m v^{2} \\
& v=\sqrt{\frac{2 \times 1.6 \times 10^{-19} \times 300}{9.11 \times 10^{-31}}} \\
& \text { speed }=1.03 \times 10^{7}\left(\mathrm{~m} \mathrm{~s}^{-1}\right)
\end{aligned}
$$ \& C1
C 1
C 1

A0 \& | Note 1.05×10^{14} scores 2 marks; omitted square rooting |
| :--- |
| Examiner's Comments |
| Good candidates clearly showed the steps to determine the velocity. Weaker candidates found this question difficult. Clear substitution of numbers is required for these marks to be awarded. |

\hline \& b \& $$
\lambda=\frac{6.63 \times 10^{-34}}{9.11 \times 10^{-31} \times 1.0 \times 10^{7}}
$$

\[
\lambda=7.3 \times 10^{-11}(\mathrm{~m})

\] \& C1 \& | Allow ECF from the previous question part |
| :--- |
| Allow 2 marks for $7.1 \times 10^{-11}, v=1.03 \times 10^{7}$ used |
| Examiner's Comments |
| This part was generally well answered although some candidates confused terms in the equation or could not deal with the powers of ten. Some candidates were confused and used $E=h c / \lambda$. |

\hline \& c \& | Momentum / (kinetic) energy / speed (of electrons) increases / (de Broglie) wavelength decreases |
| :--- |
| Radius / diameter of rings decreases / pattern becomes 'smaller' (AW) or the rings are now brighter | \& B1 \& | Examiner's Comments |
| :--- |
| This was another question where candidates were expected to explain their answers. In this case a step by step approach was helpful. Some candidates stated that the energy and the wavelength would increase. Others thought that the pattern would become larger because of the increase in energy. Candidates should be encouraged to write clear, logical explanations. |

\hline \& \& Total \& 7 \&

\hline $$
\begin{aligned}
& 3 \\
& 6
\end{aligned}
$$ \& a \& \[

$$
\begin{aligned}
& \text { electrons emitted } / \mathrm{s}=1.0 \times 10^{-9} / 1.6 \times \\
& 10^{-19}=6.25 \times 10^{9} \\
& \text { photons arriving }=6.25 \times 10^{9} \times 20=1.25 \\
& 10^{11} \\
& \varepsilon=1.2510^{11} \times 4.0 \times 10^{-19}=5.0 \times 10^{-8}(\mathrm{~J} \\
& \left.\mathrm{s}^{-1}\right)
\end{aligned}
$$

\] \& | C1 |
| :--- |
| C1 |
| A1 | \& Allow ecf: 1 out of 3 for correct answer from any quoted number of electrons emitted / s

\hline \& b \& $$
\begin{aligned}
& \varepsilon=h c / \lambda \\
& 3.5 \times 10^{-19}=6.6 \times 10^{-34} \times 3.0 \times 10^{8} / \lambda \\
& \lambda=5.66 \times 10^{-7}(\mathrm{~m})
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& \mathrm{C} 1 \\
& \mathrm{M} 1 \\
& \mathrm{~A} 1
\end{aligned}
$$
\] \&

\hline \& \& Total \& 6 \&

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline \& \& \begin{tabular}{l}
Photon mentioned / one-to-one interaction (between electron and photon) \\
(Maximum KE of electrons decreases as wavelength increases because) \\
\(K E_{(\max)}=\frac{h c}{\lambda}-\phi \quad\) (Any subject) \\
or threshold frequenc \\
(When \(\lambda<\lambda_{0}\)) energy (of photon) > work function \(/ f>\) threshold frequency and electrons emitted \(/ K E_{(\text {max })} \neq 0\) \\
or \\
(When \(\lambda=\lambda_{0}\)) energy (of photon) \(=\) work function \(/ f=\) threshold frequency and electrons just emitted / not emitted / \\
\(K E_{(\text {max })}=0\) \\
or \\
(When \(\lambda>\lambda_{0}\)) energy (of photon) < work function / \(f<\) threshold frequency and electrons not emitted \(/ K E_{(\max)}=0\)
\end{tabular} \& B1
B1

B1 \& | Not $K E_{(\text {max })}=h f-\varphi$ by itself, but allow with $\underline{c}=f \lambda$ |
| :--- |
| Allow $\frac{h c}{\lambda}$ or $h f$ for 'energy of photon' and φ |
| for 'work function' for this B1 mark |
| Not f_{0} for threshold frequency |
| Allow λ_{0} / threshold wavelength is the maximum wavelength for electrons to be emitted |
| Allow threshold frequency is the minimum frequency for electron(s) to be emitted |
| Allow work function is the minimum energy for electron(s) to be emitted |

\hline \& \& Total \& 3 \&

\hline \& \& $$
\begin{aligned}
& \frac{h c}{\lambda}=2 \times 9.11 \times 10^{-31} \times\left(3.0 \times 10^{8}\right)^{2} \\
& \lambda=\frac{6.63 \times 10^{-34} \times 3.0 \times 10^{8}}{2 \times 9.11 \times 10^{-31} \times\left(3.0 \times 10^{8}\right)^{2}} \\
& \lambda=1.2 \times 10^{-12}(\mathrm{~m})
\end{aligned}
$$ \& C1

C1
A1 \& Allow 2 marks for $2.4 \times 10^{-12}(\mathrm{~m})$; factor of 2 omitted in the first line.

\hline \& \& Total \& 3 \&

\hline \& \& $$
\begin{aligned}
& 3.2 \times 1.6 \times 10^{-19} \text { or } 6.63 \times 10^{-34} \times 960 \times \\
& 10^{12} \\
& E_{k \max }=6.63 \times 10^{-34} \times 960 \times 10^{12}-5.12 \times \\
& 10^{-19}
\end{aligned} E_{E_{\max }=1.2 \times 10^{-19}(\mathrm{~J})}
$$ \& C1

C1

A1 \& | Note answer to 3 SF is $1.24 \times 10^{-19}(\mathrm{~J})$ |
| :--- |
| Examiner's Comments |
| This part was generally well answered. Some weaker candidates were not able to rearrange Einstein's equation. Other candidates were unable to change electron volt to joule. |

\hline \& \& Total \& 3 \&

\hline \& a \& | Photon(s) mentioned |
| :--- |
| One-to-one interaction between photons and electrons |
| Energy of photon is independent of intensity / intensity is to do with rate (of | \& B1

B1

B1 \& | Allow 'photon absorbed by an electron' Allow: collide etc. for interaction |
| :--- |
| Allow $E=h f$ or $E=h c / \lambda$ |

\hline
\end{tabular}

				When the p.d. is about 2.2 V , and the current zero, the most energetic electron are stopped from reaching \mathbf{C}. This makes the maximum kinetic energy of the electrons equal to 2.2 eV or $3.4 \times 10^{-19} \mathrm{~J}$. The question baffled most candidates. Some top-end candidates commented on 'the electrons repelled by \boldsymbol{C} ' and the maximum kinetic energy of the emitted electrons being 2.2 eV . Such answers were rare. Too many candidates made guesses with answers such as 'the current drops because resistance increases' and 'temperature increases and hence the current decreases'.
		Total	10	
$\begin{aligned} & 4 \\ & 5 \end{aligned}$		$\begin{aligned} & E=(h c / \lambda=) 6.63 \times 10^{-34} \times 3.0 \times 10^{8} / 450 \times \\ & 10^{-9} \\ & E=4.42 \times 10^{-19}(\mathrm{~J}) \\ & \text { energy }=2.76(\mathrm{eV}) \end{aligned}$	C1 C1 A1	N.B. the answer here must be 2 SF or more
		Total	3	
4		$\begin{aligned} & E=\frac{6.63 \times 10^{-34} \times 3.0 \times 10^{8}}{480 \times 10^{-9}} \text { or } E=4.1(4) \times \\ & N=\frac{1.2 \times 10^{-3}}{4.1(4) \times 10^{-19}} \end{aligned}$ $N=2.9 \times 10^{15}\left(\mathrm{~s}^{-1}\right)$	C1	Examiner's Comments The term 'photon' and the 480 nm wavelength should have prompted most candidates to calculate the energy of a single photon. The most common answer was to divide the 1.2 mW by 480 nm . Once again, it was the top-end candidates who correctly arrived at the answer of 2.9×10^{15} photons per second. About 1 in every five candidates omitted this question.
		Total	3	
4 7		$\begin{aligned} & (E=) 1.8 \times 1.6 \times \quad \text { or } 2.88 \times 10^{-19}(\mathrm{~J}) \\ & 10^{-19} \\ & 1.8 \times 1.6 \times 10^{-19}=\frac{6.63 \times 10^{-34} \times 3.0 \times 10^{8}}{\lambda} \\ & \lambda=6.9 \times 10^{-7}(\mathrm{~m}) \end{aligned}$	C1 C1 A1	
		Total	3	
$\begin{aligned} & 4 \\ & 8 \end{aligned}$	a	The wave model cannot explain why there is a threshold frequency for metals. The new model / photon model proposed one-to-one interaction between photons and electrons and this successfully explained why threshold frequency exists.	B1	

		Any further one from: Energy of photon (hf) must be greater than or equal to work function of metal. The kinetic energy of emitted electrons was independent of the incident intensity. Correct reference to $\mathrm{hf}=\Phi+$ KEmax	B1	
	i	$E=\frac{6.63 \times 10^{-34} \times 3.0 \times 10^{8}}{380 \times 10^{-9}} \quad \text { or } \quad \phi=1.1 \times 1 .$	C1	
	i	$\frac{6.63 \times 10^{-34} \times 3.0 \times 10^{8}}{380 \times 1.10 \times 1.6 \times 10^{-19}+\frac{1}{2} \times 9.11 \times 10^{-31} v^{2}}$	C1	This is substituting values into $\frac{h c}{\lambda}=\phi+\frac{1}{2} m v^{2}$
	i	speed $=8.7 \times 10^{5}\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$	A1	
	ii	The energy of a photon depends only on wavelength or frequency, so intensity does not change the maximum speed of the photoelectrons.	B1	
		Total	7	
4 9		${ }^{238}{ }_{92} \mathrm{U} \rightarrow{ }^{234}{ }_{90} \mathrm{Th}+\ldots .$. ${ }_{2}^{4} \mathrm{He}$ or ${ }^{4}{ }_{2} \mathrm{a}$	B1 B1	allow proton and / or nucleon number to the right of symbol allow γ-photon; zero for any other extra particle Examiner's Comments Most candidates made a good start to the paper writing a correct equation for the nuclear decay.
	b	$\begin{aligned} & m v=(4.00-0.0665) \times 10^{-25} \times 2.40 \times 10^{5} \\ & =9.44 \times 10^{-20} \\ & v=9.44 \times 10^{-20} / 6.65 \times 10^{-27}=1.42 \times 10^{7} \end{aligned}$ $\begin{aligned} & \text { k.e. }=1 / 2 \times 6.65 \times 10^{-27} \times\left(1.42 \times 10^{7}\right)^{2} \\ & =6.70 \times 10^{-13}(\mathrm{~J}) \\ & 6.70 \times 10^{-13} / 1.60 \times 10^{-13}=4.19(\mathrm{MeV}) \end{aligned}$	C1 C1 A1 B1	allow 0.07×10^{-25} for α-particle mass max 3 if use 4.00 instead of 3.93 in momentum eq'n allow ratio of masses 234 and 4 or calculations using $234 u$ and $4 u$ allow $\mathrm{p}^{2} / 2 \mathrm{~m}$ calculation for k.e. accept 4.0 to 4.2 ; ecf (calculated value of k.e. in J)/e N.B. the correct answer automatically gains all 4 marks Examiner's Comments One mark in this question was reserved for converting units from joule into mega electronvolt. This was the only mark awarded to half of the candidates. Few recognised this to be an isolated system, applying the conservation of momentum to solve the problem. Few appeared to realise that the mass of an alpha particle is given in the Data, Formulae, and Relationships Booklet, calculating it instead by summing the masses of neutrons and protons. The most common incorrect approach was to use the formula $E=m c^{2}$ or to equate the kinetic energies of the thorium nucleus and alpha particle.
	c	$\begin{aligned} & \Delta A=32=4 n_{\alpha} \text { so } n_{\alpha}=8 \\ & \Delta Z=10=2 n_{\alpha}-n_{\beta} \text { so } n_{\beta}=6 \end{aligned}$ argument / reasoning given for both n_{α} and n_{β}	B1 B1 B1	allow 8 (decays), i.e no mention of a particles allow $10-16=-6$; NOT $14-8=6$; must state $\beta(-)$ particles e.g. change in mass number caused by α decay,change in proton number combination of α and β Examiner's Comments

				A significant number had no idea where to start and left the page blank. Of the rest most managed to decide on 8 alpha particles. A minority worked initially with the proton number rather than the nucleon number incorrectly choosing 5 . The explanations about the choice of 6 beta particles were often just restricted to equating the numbers correctly rather than giving any description of the transformation of neutrons into protons.
		Total	9	
		Any four from: - electrons may be diffracted by graphite/carbon/atoms/crystal lattice - to produce rings / circular interference fringes - diffraction of electrons occurs when the wavelength is comparable / similar to the gap size - changes in the electron's speed/energy change the size of the ring / interference fringe spacing - electrons have a (de Broglie) wavelength given by $\lambda=h / p$ - reason for the rings as opposed to linear pattern, e.g. graphite atoms are irregularly arranged.	$\begin{gathered} \text { B1 x } \\ 4 \end{gathered}$	Examiner's Comments The final question gave candidates the opportunity to describe the electron diffraction experiment. Answers were often vague, lacking necessary detail. Most candidates were able to describe electrons being diffracted by a graphite crystal lattice. Additional marks could have been gained by discussing the observations, the idea that electrons have a de Broglie wavelength and how the wavelength may be changed and the effect on the observations of a change in wavelength. Some candidates described why a circular pattern may be produced.
	b i	Threshold frequency is the minimum frequency (of the incident EM waves/photon) to detach / emit / remove / release an electron (from the surface of the silver)	B1	Allow electrons Allow photoelectron / photoelectrons Examiner's Comments The majority of the candidates gained a mark for this question. When the mark was not scored, it was often due to candidates not realising it was the "minimum" frequency or answering the question in terms of energy.
		$1.1(0) \times 10^{15}(\mathrm{~Hz})$	B1	Examiner's Comments Most candidates were able to read the threshold frequency from the graph. Where errors were made it was for either mis-reading the scale as 1.2 or omitting the $10^{15} \mathrm{~Hz}$. AfL When reading data from a graph, read the scale and the units from each axis.

		$6.63 \times 10^{-34} \times 1.1 \times 10^{15} \text { or } 7.293 \times 10^{-19}$ $4.6 \text { (eV) }$	C1	Allow substitution of point from graph into Einstein's equation Allow use of gradient as the Planck constant Note 4.558... eV Examiner's Comments The majority of the candidates scored two marks on this question. Again, clear working assists candidates with appropriate units being included in intermediate stages of the calculation. Most candidates calculated the work function from the threshold frequency, their answer to the previous part. Some candidates correctly took a data point from the graph and substituted it into Einstein's photoelectric equation which also gained credit. Exemplar 8 The candidate states the condition for the threshold frequency, indicates clearly the calculation of the work function in joule, before clearly demonstrating the conversion to electron volt so gained both marks.
		Total	8	
$\begin{aligned} & 5 \\ & 1 \end{aligned}$	i	$\begin{aligned} & E=\frac{6.63 \times 10^{-34} \times 3.0 \times 10^{8}}{490 \times 10^{-9}} \\ & \text { energy }=4.1 \times 10^{-19}(\mathrm{~J}) \end{aligned}$	C1 A1	Note answer to 3 SF is 4.06×10^{-19}
	ii	$\text { (number of photons }=\text {) } \frac{0.230}{4.06 \times 10^{-19}}$ number of photons $=5.7 \times 10^{17}$	C1 A1	Possible ECF from (b)(i) Note answer is 5.6×10^{17} when 4.1×10^{-19} is used
		Total	4	
2		One photon interacts with one electron energy of photon $=$ (maximum) $K E$ (of electron) + work function (of the metal)	B1 B1	Ignore references to frequencies and threshold frequency Allow photoelectron instead of electron throughout Note an equation is required Allow $h f=K E(\max)+\varphi$, with * $h f=$ energy of photon, $K E(\max)=$ (maximum) $K E$ (of electron) and $\varphi=$ work function *Not $h f=$ Planck constant \times frequency (since there is no reference to 'energy of photon') Allow energy of photons = \qquad as BOD Allow φ instead of work function for this mark

\begin{tabular}{|c|c|c|c|c|c|}
\hline \& \& \& \begin{tabular}{l}
Work function is the minimum energy (required) to remove electron (from the surface of a metal) \\
Electron removed / photoelectric effect when energy of photon is greater than / equal to work function (of the metal)
\end{tabular} \& B1 \& \begin{tabular}{l}
Allow 'work done' instead of 'energy' \\
Allow ...electronsas BOD \\
Allow electron removed / photoelectric effect when \(h f>\varphi\) or electron removed / photoelectric effect when \(h f=\varphi\) or electron not removed / no photoelectric effect when \(h f<\varphi\) Allow electrons and photons as BOD \\
Examiner's Comments \\
This question on the photoelectric effect provided excellent discrimination with most candidates demonstrating good knowledge of the photoelectric effect. The work function was well defined and the key idea of the one-to-one interaction between a photon and an electron was communicated well. Some candidates took work function and threshold frequency to be synonymous, and the Einstein's photoelectric equation was quoted without much interpretation. Candidates are once again reminded that in descriptions it is important to define any terms used. Rather than just writing \(h f=\varphi+\) KEmax (which appears on the Data, Formulae and Relationship booklet), it would have would have been better to write energy of photon \(=\) work function of the metal + maximum kinetic energy of the electron as an alternative to annotating the formula with "where \(h\) is , \(f\) is , \(\varphi\) is, KEmax is " Overall, the terms highlighted in the question helped candidates to provide focused responses. Many candidates continue to show knowledge of the quantum physics.
\end{tabular} \\
\hline \& \& \& Total \& 4 \& \\
\hline \& \& \& \(2.76-2.3=0.46 \mathrm{eV}\) (so only \(0.5 \%\) of energy/AW) \& B1 \& allow \(2.8-2.3=0.5 \mathrm{eV}\) and \(3.0-2.3=0.7 \mathrm{eV}\) possible ecf from (b) \\
\hline \& \& \& \[
\begin{aligned}
\& n=2000 \times 4^{9}\left(=5.24 \times 10^{8}\right) \\
\& \mathrm{Q}=n e=8.4 \times 10^{-11}(\mathrm{C}) \\
\& I=8.4 \times 10^{-11} / 2.5 \times 10^{-9} \\
\& \text { average current }=0.034(\mathrm{~A})
\end{aligned}
\] \& C1
C1

A1 \& | allow ecf for wrong n |
| :--- |
| allow $34 \mathrm{~m}(\mathrm{~A})$; answer is $1.7 \times 10^{-5} \mathrm{~A}$ if 2000 omitted (2/3) |
| Examiner's Comments |
| Almost all of the candidates attempted this last section of the paper with some success. In part (i) most candidates showed that they understood the theory behind the question and subtracted the appropriate two numbers from part (b) to gain the mark. Part (ii) was done well with a significant number obtaining the correct answer. Another large group forgot that 2000 electrons were released and performed the calculation for only a single electron being multiplied up and so forfeited the final mark. |

\hline \& \& \& Total \& 4 \&

\hline \& \& \& At point P: path difference between slits and screen is a whole / integer number of wavelengths (for constructive \& B1 \& Allow $\mathrm{n} \lambda$ or λ Not phase difference

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline \& \begin{tabular}{l}
interference) \\
At point Q: path difference between slits and screen is an odd number of half wavelengths (for destructive interference)
\end{tabular} \& B1 \& \begin{tabular}{l}
Allow \(\left(n+\frac{1}{2}\right)\) 入 \\
Not \(\lambda / 2\) \\
Examiner's Comments \\
It was expected that candidates would describe the path difference in terms of the wavelength. Candidates often realised that the bright line would have a path difference of an integer number of wavelengths, this was often written as \(n \lambda\). To explain the dark line many candidates struggled with the appropriate relationship in terms of \(\lambda\) or did not state an odd number of half wavelengths.
\end{tabular} \\
\hline \& \begin{tabular}{l}
\[
x=4.22 \mathrm{~mm}
\] \\
1
\[
\begin{aligned}
\& \lambda=\frac{4.22 \times 10^{-3} \times 0.56 \times 10^{-3}}{5.25 \times 10^{-7} \mathrm{~m}^{4.50}} \\
\& 5 .
\end{aligned}
\]
\[
\begin{aligned}
\& \frac{0.02}{4.5} \quad \text { or } \quad \frac{0.02}{0.56} \quad \text { or } \frac{0.2}{42.2} \\
\& \left(\frac{0.02}{4.5}+\frac{0.02}{0.56}+\frac{0.2}{42.2}\right) \times 100=4.48 \%
\end{aligned}
\] \\
Alternative max / min method:
\[
\mathbf{2}_{\lambda_{\max }}=\frac{4.24 \times 10^{-3} \times 0.58 \times 10^{-3}}{4.48}=5.49 \times
\] \\
and/or
\[
\lambda_{\text {min }}=\frac{4.20 \times 10^{-3} \times 0.54 \times 10^{-3}}{4.52}=5.02 \times 1
\]
\[
\frac{\Delta \lambda}{\lambda} \times 100=4.4 \% \text { or } 4.6 \%
\]
\end{tabular} \& C1
C1
A1
C1
A1
A1

B1
B1

B1 \& | Note $\mathbf{x}=42.2 \mathrm{~mm}$ or $4.2 \times 10^{-2} \mathrm{~m}$ scores zero |
| :--- |
| Note $\mathbf{x}=3.84,4.77 \times 10^{-7} \mathrm{~m}$ may score max 2 |
| Allow 4\% or 5\% with evidence of working Ignore significant figures |
| Examiner's Comments |
| Although candidates correctly identified the correct equation, a large number of candidates did not determine the fringe spacing correctly. Some candidates used 42.2 cm , others divided 42.2 cm by 11,15 or 20 . Furthermore, some candidates did not convert the slit separation from millimetres to metres. Candidates were able to identify the equation from the Data, Formulae and Relationships Booklet. |
| Most candidates were able to determine at least one percentage uncertainty for the individual quantities correctly. Mistakes were made either on determining the other quantities or adding the percentage uncertainties. Some candidates attempted a maximum / minimum method - the common error with this method was not dividing maximum by minimum or minimum by maximum. |

\hline \& \[
$$
\begin{aligned}
& \frac{6.63 \times 10^{-34} \times 3 \times 10^{8}}{5.25 \times 10^{-7}}=\frac{1.989 \times 10^{-25}}{5 \text { b ii } 1}=3.79 \\
& n=\frac{50 \times 10^{-3}}{3.79 \times 10^{-19}}=2.5 \times 10^{23} \times 5 \text { b ii } 1=1.3 \times
\end{aligned}
$$

\] \& C1 \& | Allow ecf from bii |
| :--- |
| Examiner's Comments |
| Candidates found this question difficult. Many could not determine the energy of a photon correctly - an error carried forward was allowed from 5(b)(ii)1. The question also required candidates to realise that 50.0 mW is equivalent to $50.0 \mathrm{~mJ} \mathrm{~s}^{-1}$. |
| A common error was to divide the power by the charge on an electron. |

\hline \& $$
\begin{aligned}
& 2.6 \mathrm{eV}=2.6 \times 1.6 \times 10^{-19}=4.16 \times 10^{-19} \mathrm{~J} \\
& \text { ORA }
\end{aligned}
$$ \& M1 \& Allow photon has 2.37 eV of energy

\hline
\end{tabular}

	Energy of photon is less than work function so photoelectrons will not be emitted	A1	Allow conclusion based $5 \mathbf{c i}$ Examiner's Comments To explain whether photoelectrons will be emitted, candidates needed to convert the work function measured in electron volt to joule. A clear conclusion was needed.
	Total	11	
5	Kinetic energy (of proton) changes to potential (energy) or Potential energy increases as the kinetic energy (of the proton) decreases or Potential energy increases as work is done against the field / against repulsion / positive charge	B1	Allow 'it' / PE for (electric) potential energy Allow KE / E_{k}
	$\begin{aligned} & \text { energy }=0.52 \times 10^{6} \times 1.60 \times 10^{-19} \text { or } \\ & 8.3(2) \times 10^{-14}(\mathrm{~J}) \\ & \frac{1.60 \times 10^{-19} \times 27 \times 1.60 \times 10^{-19}}{4 \pi \varepsilon_{0} R}=8.32 \times 10^{-1} \\ & R=7.5 \times 10^{-14}(\mathrm{~m}) \end{aligned}$	C1 C1 A1	Allow 2 mark for $1.6 \times 10^{-13}(\mathrm{~m}) ; Z=59$ used Allow 2 mark for $8.9 \times 10^{-14}(\mathrm{~m}) ; Z=32$ used Allow 1 mark for $2.8 \times 10^{-15}(\mathrm{~m}) ; Z=1$ used Allow 1 mark for $1.2 \times 10^{-32}(\mathrm{~m})$; energy $=5.2 \times 10^{5}$ used Examiner's Comments The above question on electric potential energy provided excellent discrimination with middle and upper quartile candidates showing how to produce immaculate answers - identify the physics, write down the correct physical equation, do any necessary conversions (e.g. MeV to J), rearrange the equation, substitute correctly and then write the final answer in standard form to the correct number of significant figures. About a third of the candidates scored full marks. Some of the missed opportunities or errors were: - Using an incorrect equation with the distance squared - Not correctly converting the kinetic energy 0.52 MeV into joule (J) - Using the equation $r=r_{0} A^{1 / 3}$ for the mean radius of a nucleus to determine the minimum distance

		Total		

\begin{tabular}{|c|c|c|c|c|}
\hline \& \& Total \& 5 \&

\hline \& \& $$
\begin{aligned}
& \text { (surface area }=\text {) } 4 \pi \times(1.4 \times \\
& \left.10^{9}\right)^{2} \text { or } 2.46 \times 10^{19}\left(\mathrm{~m}^{2}\right) \\
& \text { (intensity } \left.=\frac{P}{4 \pi r^{2}}\right) \\
& \text { intensity }=\frac{2.7 \times 10^{27}}{4 \pi \times\left(1.4 \times 10^{9}\right)^{2}} \\
& \text { intensity }=1.1 \times 10^{8}\left(\mathrm{Wm}^{-2}\right)
\end{aligned}
$$ \& C1
C1

A0 \& | Allow $2.5 \times 10^{19}\left(\mathrm{~m}^{2}\right)$ |
| :--- |
| Note: Using $\pi \times\left(1.4 \times 10^{9}\right)^{2}$ is wrong physics; hence no marks in this show question |
| Examiner's Comments |
| This was a demanding question designed for middle and top-end candidates. The radiant intensity is equal to the power transmitted per unit cross-sectional area. The area being that of a sphere of radius $1.4 \times 10^{9} \mathrm{~m}$. The equation $4 \pi \mathrm{R}^{2}$ was appropriate here. The common errors, mainly from the low-scoring candidates, were using $\pi \mathrm{R}^{2}$ and $\frac{{ }_{3}}{} \pi R^{3}$. All the key steps in the calculations had to be structured well for |

\hline \& ii \& $$
\begin{aligned}
& E=\frac{3.00 \times 10^{8} \times 6.63 \times 10^{-34}}{5.0 \times 10^{-7}} \\
& E=4.0 \times 10^{-19}(\mathrm{~J})
\end{aligned}
$$ \& C1

A1 \& | Note: Answer to 3 SF is $3.98 \times 10^{-19}(\mathrm{~J})$ |
| :--- |
| Allow $4 \times 10^{-19}(\mathrm{~J})$ without any SF penalty |
| Examiner's Comments |
| Most candidates were familiar with the equation for the energy of the photon. Answers were generally well-structured and calculations were undertaken without much error in either rearranging the equation or powers of ten. The answer to two significant figures was $4.0 \times 10^{-19} \mathrm{~J}$, as in the general rule with such answers, $4 \times 10^{-19} \mathrm{~J}$ was acceptable without any significant figure penalty. |

\hline \& \& \[
$$
\begin{aligned}
& \text { (number per second } \left.=\frac{2.7 \times 10^{27}}{4.0 \times 10^{-19}}\right) \\
& \text { number per second }=6.8 \times 10^{45}\left(\mathrm{~s}^{-1}\right)
\end{aligned}
$$

\] \& B1 \& | Possible ECF from (b)(ii) |
| :--- |
| Examiner's Comments |
| This was a successful end for the top-end candidates, who correctly divided the total output power of Procyon of $2.7 \times 10^{27} \mathrm{~W}$ by the energy of each photon from (b)(ii). The two common errors were dividing the intensity by the photon energy and changing the photon energy from joule (J) to electron-volt (eV). |

\hline \& \& Total \& 5 \&

\hline 6

3 \& i \& $$
\begin{aligned}
& (P=) 0.01 \times 2.5 \text { or } 0.01^{2} \times 250 \text { or } \\
& 2.5^{2} / 250 \text { or } 0.025(\mathrm{~W}) \\
& \left(E_{\text {photon }}=\right) \frac{6.63 \times 10^{-34} \times 3.0 \times 10^{8}}{4.7 \times 10^{-7}} \text { or } 4.23 \times 10^{--}(\mathrm{J}) \\
& \text { (number per second } \frac{0.025}{\left.4.23 \times 10^{-19}\right)} \\
& =
\end{aligned}
$$ \& C1

C1 \& Allow $4.0 \times 10^{-19}(\mathrm{~J})$; which is 2.5 eV

\hline
\end{tabular}

	number per second $=5.9 \times 10^{16}\left(\mathrm{~s}^{-1}\right)$	A1	Note using $4.0 \times 10^{-19}(\mathrm{~J})$ gives $6.25 \times 10^{16}\left(\mathrm{~s}^{-1}\right)$ Examiner's Comments This question required knowledge of both power and energy of photons. It discriminated well with many of the top end candidates getting the correct of $5.9 \times 10^{16} \mathrm{~s}^{-1}$. A significant number of candidates scored 1 mark for the energy of the photons. Using the power of 0.025 W in the final step of the calculation proved to be the main obstacle in this calculation. Alternative answers using the energy of a photon as 2.5 eV were allowed. This gave the rate of photons emission to be $4.0 \times 10^{16} \mathrm{~s}^{-1}$. Misconception The most common mistake was to calculate the energy of the photon in joule, but to write the frequency 6.4×10^{14} on the answer line. This wayward answer can perhaps be explained by frequency and the rate of photon emissions having the same units $-\mathrm{s}^{-1}$.
	$\left(E_{\text {photon }}=\right) 2.64(\mathrm{eV})$ or $(\varphi=) 3.68 \times 10^{-19}$ (J) $\begin{aligned} & \text { or }\left(f_{0}=\right) 5.55 \times 10^{14}(\mathrm{~Hz}) \text { or }(\lambda 0=) 5.40 \times \\ & 10^{-7}(\mathrm{~m}) \end{aligned}$ Photoelectrons are emitted and 2.6(4) > 2.3 $\begin{aligned} & \text { or } 4.23 \times 10^{-19}>3.68 \times 10^{-19} \\ & \text { or } 6.38 \times 10^{14}(\mathrm{~Hz})>5.55 \times 10^{14}(\mathrm{~Hz}) \\ & \text { or } 4.7 \times 10^{-7}(\mathrm{~m})<5.40 \times 10^{-7}(\mathrm{~m}) \end{aligned}$	M1	Possible ECF from (i) Allow $2.6(\mathrm{eV})$ or $3.7 \times 10^{-19}(\mathrm{~J})$ Allow $2.5(\mathrm{eV})$ as the energy of the photon Note the conclusion must be consistent with (i) Allow $h f>\varphi$ Note this can be implied by calculating the KE of the emitted electron Examiner's Comments Most candidates showed excellent knowledge and understanding of electronvolts and the photoelectric equation. A variety of answers were accepted. The most common approach was to calculate the energy of the photon in eV , and then either show that this was greater than the work function of the metal or to calculate the kinetic energy of the emitted photoelectron. A lot of confidence in the topic of quantum physics was evident in the answers from the candidates. This is illustrated by exemplar 8 below from a middle-grade candidate. Exemplar 8 (ii) The light from the LED is incident on a metal of work function 2.3 eV . Explain, with the help of a calculation, whether or not photoelectrons will be emitted from the surface of the metal. This exemplar shows the right blend of calculations and scientific

				text to support the response. Good command of quantum physics earned this candidate full marks.

\begin{tabular}{|c|c|c|c|c|}
\hline \& i \& \(\mathrm{v}=2.05 \times 10^{6}\left(\mathrm{~m} \mathrm{~s}^{-1}\right)\) \& A1 \& \\
\hline \& \multirow[t]{2}{*}{ii} \& \multirow[t]{2}{*}{accelerates from 0 to v so use \(\mathrm{v} / 2\)
\[
t=5 \times 10^{-3} / 1 \times 10^{6}=5 \times 10^{-9}(\mathrm{~s})
\]} \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& \mathrm{C} 1 \\
\& \mathrm{~A} 1
\end{aligned}
\]} \& ecf (i) \\
\hline \& \& \& \& Allow 1 mark for \(2.5 \times 10^{-9} \mathrm{~s}\) \\
\hline \& \& Total \& 6 \& \\
\hline 6 \& i \& \begin{tabular}{l}
\(h f=\phi+K E(\) max \()\) and kinetic energy \(=0\) \\
(at \(f_{0}\)) (therefore \(\phi=h f_{0}\))
\end{tabular} \& B1 \& \begin{tabular}{l}
Examiner's Comments \\
About a third of the candidates showed how Einstein's photoelectric equation led to the expression \(\phi=h f_{0}\). The key in securing a mark was stating that the kinetic energy of the electrons is zero at the threshold frequency. Some candidates lost the mark for careless work such as writing
\[
h f_{0}=\phi+K E_{\max } .
\]
\end{tabular} \\
\hline \& ii \& Data point (to with \(1 / 2\) small square) and a reasonable straight (best-fit) line drawn with a straight edge / ruler \& B1 \& \begin{tabular}{l}
Not freehand / wobbly line \\
Examiner's Comments \\
Most candidates picked up the mark for plotting the data point and drawing a best fit line. Examiners were a lenient with the marking of the line of best fit. Candidates must use rulers and ensure an equal spread of data plots about their best fit lines.
\end{tabular} \\
\hline \& \& \begin{tabular}{l}
Correct conversion from eV to J using
\[
1.6 \times 10^{-19}
\] \\
(gradient \(=h\)) \\
gradient determined and
\[
h=(6.4 \text { to } 7.4) \times 10^{-34}(\mathrm{~J} \text { s })
\]
\end{tabular} \& B1 \& \begin{tabular}{l}
Note this can be a single value of \(\phi\) or \(\Delta \phi\) \\
Allow value of \(h\) must be given to 2 or \\
3 SF \\
Examiner's Comments \\
The determination of Planck constant \(h\) from the gradient of the best fit line was impeccably undertaken by the top-end candidates. A large triangle was used to determine the gradient of the best fit line. More than half of the candidates correctly converted the eV to \\
J . The most common errors here were: \\
- Using \(1.0 \times 10^{-19}\), rather than \(1.6 \times 10^{-19}\) to convert eV to J . \\
- Calculating the gradient using eV values. \\
- Omitting the \(10^{14}\) factor for the frequency.
\end{tabular} \\
\hline \& \& \begin{tabular}{l}
Draw a worst-fit line (and determine gradient / h) (AW) \\
\% uncertainty \(=(h\) from biii \(-h\) from worst line) \(\times 100 \div h\) from biii \\
or \\
Calculate the average \(h\) using \(\mathrm{f}_{0}\) and \(\phi\) (values)
\end{tabular} \& B1
B1

B1

B1 \& | Allow (line of) maximum / minimum gradient |
| :--- |
| Ignore sign |
| Allow gradient instead of h |

\hline
\end{tabular}

4.5 Quantum Physics

				Exemplar 9 In line 3 of the candidate's working, there is a rearrangement of the equation given at the beginning of the question. There is then clear substitution of the energy of a photon which was calculated in line 1 and the work function which had been converted from electron volt to joule in line 2 to give a value for the maximum kinetic energy of the electrons. This scores three marks. In the final part the candidate correctly shows the rearrangement of the kinetic energy equation to give v as the subject and then correctly substitutes in the values including the mass of the electron from the data and formulae sheet. The final answer is given as 5.527×105 which is then shown to be approximately equal to $5.5 \times 105\left(\mathrm{~ms}^{-1}\right)$. This last part is essential in these show type questions.
	ii	Maximum energy is independent of intensity/(number of photons has increased but) energy of photon is the same/energy of a photon is only dependent on frequency/intensity affects the number of photons/electrons released only/frequency of photon has not changed No change in maximum speed	M1	Not "Does not increase" Examiner's Comments For this type of question, a clear explanation is needed before the mark for stating the change, if any. Candidates' descriptions were often vague, and few stated that the maximum energy was independent of intensity.
		Total	6	
	i	Electrons behave or travel as waves.	B1	

$\left.\begin{array}{|l|l|l|l|}\hline\end{array}\left|\begin{array}{ll} \\ \hline\end{array}\right| \begin{array}{ll}\text { When analysing experimental data, candidates should be able to } \\ \text { determine appropriate graphs to plot which will give a straight line } \\ \text { (if the given relationship is true). Candidates should also be able to } \\ \text { describe how unknown quantities may be determined using the } \\ \text { gradient and / or } y \text {-intercept. }\end{array}\right]$

			clearly explained the differences between the white light and the ultra violet light, the effect of increasing the intensity was related to the rate at which photons were absorbed by the plate and gave appropriate equations.
	Total	6	
	*Level 3 (5-6 marks) Clear explanation and discussion There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3-4 marks) Some explanation and some discussion There is a line of reasoning presented with some structure. The information presented is in the most-part relevant and supported by some evidence. Level 1 (1-2 marks) Limited explanation or limited discussion The information is basic and communicated in an unstructured way. The information is supported by limited evidence and the relationship to the evidence may not be clear. 0 marks No response or no response worthy of credit.	$\begin{gathered} \text { B1 } \times \\ 6 \end{gathered}$	Indicative scientific points may include: Explanation - $h f=\Phi+K E_{\max }$ (any subject) - A graph of $\mathrm{KE}_{\max }$ against f is a straight line graph with gradient $=h($ and intercept $=-\Phi)$ - Draw a straight best-fit line through points and determine the gradient using a 'large triangle' Discussion of accuracy and precision - \% uncertainties are 4.8% for \mathbf{A} and 9.1% for \mathbf{B} - Data points widely spread out for \mathbf{B}. (ORA) - For \mathbf{B} the value of h is accurate because its closer to the real / actual value (but the results are not precise) - For \mathbf{A} the value of h is precise because of the smaller \% uncertainty (but the result is not accurate)
	Total	6	
7 5	Level 3 (5-6 marks) Clear description and clear calculations of energy per kg There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3-4 marks) Clear description OR Clear calculations of energy per kg OR Some description and some calculations There is a line of reasoning presented with some structure. The information presented is in the most-part relevant and supported by	$\begin{gathered} \mathrm{B} 1 \times \\ 6 \end{gathered}$	Indicative scientific points may include: Description - Energy is produced in both reactions - More energy produced (per reaction) in fission - The (total) binding energy of 'products' is greater - In fusion, nuclei repel (each other) - Fusion requires high temperatures / high KE - Fission reactions are triggered by (slow-)neutrons - Chain reaction possible in fission Calculations - 1 kg of uranium has 4.26 mols $/ 2.56 \times 10^{24}$ nuclei - 1 kg of deuterium has $500 \mathrm{~mol} / 3.01 \times 10^{26}$ nuclei $/ 1.50$ $\times 10^{26}$ 'reactions'

		some evidence. Level 1 (1-2 marks) Limited description OR Limited calculations There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant. 0 marks No response or no response worthy of credit		- $200 \mathrm{MeV}=3.2 \times 10^{-11} \mathrm{~J}$ - $4 \mathrm{MeV}=6.4 \times 10^{-13} \mathrm{~J}$ - Uranium: $\sim 10^{14}\left(\mathrm{~J} \mathrm{~kg}^{-1}\right)$ (actual value $\left.8.2 \times 10^{13}\right)$ - Deuterium: $\sim 10^{14}\left(\mathrm{~J} \mathrm{~kg}^{-1}\right)$ (actual value $\left.9.6 \times 10^{13}\right)$ - The energy per kg is roughly the same Examiner's Comments This is the second LoR question. This is designed to assess knowledge of the two nuclear energy reactions and to calculate energy release using some given data. The differences between the fission and fusion reactions were generally well answered although many candidates explained differences in design, operation and waste more than the reactions. The similarities were often not as clear however several candidates gave excellent responses in terms of binding energies and mass differences. Candidates were also expected to complete a calculation to show which produces more energy output per kilogram. This is challenging calculation to follow through fully, but most candidates were able to make some attempt, even if it was only converting MeV to J . Only better candidates realised 2 nuclei of deuterium were used for one fusion reaction. While a small number of candidates did correctly calculate the energy per kilogram, they tended to state that fusion produced more energy rather than a feeling that they are basically equivalent. As usual with LoR questions, a holistic approach is taken to the marking and candidates can access higher levels without necessarily reaching all the marking points. Even so, relatively few candidates were able to access Level 3, generally due to poor calculations and/or descriptions.
		Total	6	
6	i	Proton is repelled (by nucleus) (High-speed) proton can get close to (oxygen) nucleus	B1 B1	Allow 'proton can experience the strong (nuclear) force' Not 'collide / hit nucleus'
	ii	$\begin{aligned} & E=[0.25-(2.24-2.20)] \times 10^{-11}(\mathrm{~J}) \text { or } \\ & 0.21 \times 10^{-11}(\mathrm{~J}) \\ & \lambda=\frac{6.63 \times 10^{-34} \times 3.00 \times 10^{8}}{0.21 \times 10^{-11}} \quad \text { (Any } \\ & \text { subject) } \\ & \lambda=9.5 \times 10^{-14}(\mathrm{~m}) \end{aligned}$	C1 C1 A1	Allow 2 marks for $6.9 \times 10^{-14} ; E=0.29 \times 10^{-11}$ used Allow 1 mark for a value correctly calculated based on any other incorrect value for E (e.g. 8(.0) $\times 10^{-14}$ for $E=0.25 \times 10^{-11}$ and $5(.0) \times 10^{-13}$ for $\left.E=0.04 \times 10^{-11}\right)$
	ii	Used in PET (scans)	M1	Enter text here.

	intensity (energy of photon given by equation) $E=$ $h f / E=h c / \lambda$ One photon interacts with one electron	B1	Allow E proportional f / E proportional to $1 / \lambda$ Examiner's Comments The question is clear that the response needs to be given in terms of photons and energies. Many candidates discussed threshold frequencies, and although often correct, does not answer the question. The link between photon energy and frequency needs to be clear and not just a simple dependency - the simple solution for this is to state the equation. The final marking point requires the candidate to appreciate that only one photon can be absorbed by one electron. Standalone statements such as "there is a 1:1 relation" is meaningless in this context unless qualified. Many good candidates were able to score at least 3 marks on this question and it was clear that this is a well understood aspect. There is sufficient space for a fully clear answer and candidates are always to be reminded of the need for conciseness in such a response. Misconception Some candidates missed opportunities for marks by describing the effect wholly in terms of frequency, rather than energy.
	$\begin{aligned} & (\phi=) 2.3 \times 1.6 \times 10^{-19} \text { or } \\ & (E=) \frac{6.63 \times 10^{-34} \times 3.0 \times 10^{8}}{320 \times 10^{-9}} \\ & \left(K E_{\max }=\frac{6.63 \times 10^{-34} \times 3.0 \times 10^{8}}{320 \times 10^{-9}}-2.3 \times 1.6 \times 10^{-19}\right. \\ & (v=) \sqrt{\frac{2 \times 2.5356 \times 10^{-19}}{9.11 \times 10^{-31}}} \\ & (\text { wavelength }=) \frac{6.63 \times 10^{-34}}{9.11 \times 10^{-31} \times 7.46 \times 10^{5}} \\ & \text { wavelength }=9.8 \times 10^{-10}(\mathrm{~m}) \end{aligned}$	C1 C1 C1 A1 A	$\begin{aligned} & \phi=3.68 \times 10-19(\mathrm{~J}) ; \mathrm{E}=6.2156 \times 10-19(\mathrm{~J}) \\ & K E_{\max }=2.5356 \times 10^{-19}(\mathrm{~J}) \\ & v=7.46 \times 10^{5}\left(\mathrm{~m} \mathrm{~s}^{-1}\right) \end{aligned}$ Examiner's Comments This is a novel development on what is a common calculation of kinetic energy and as such created some challenge for some candidates. Many were able to score the first marking point, either by converting from eV to joules, or by the calculation of the photon energy. Few candidates scored 2 or 3 marks, as generally an error such as using the speed of light for the electrons occurred. However, a good number of stronger candidates were able to achieve all 4 marks and set out their solutions clearly. It should be noted that the first 3 marks are for setting up the calculations and not the evaluations. This is to not penalise candidates too early for calculational errors and as always highlights the clear need for setting out working as well as possible.
	Total	8	

